Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Prediction of the condensed phase heat of formation of energetic compounds

Mohammad Hossein Keshavarz*

Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P.O. Box 83145/115, Islamic Republic of Iran

ARTICLE INFO

Article history: Received 27 November 2010 Received in revised form 1 January 2011 Accepted 14 March 2011 Available online 21 March 2011

Keywords: Heat of formation Condensed phase Energetic compound Molecular structure Safety

1. Introduction

The condensed phase heat of formation of an energetic compound can be used to investigate its characteristics and thermochemical stability. It enters into the calculation of explosive and propellant properties such as detonation pressure, detonation pressure, detonation temperature, heat of detonation and specific impulse through computer codes or empirical methods [1–3].

Quantum mechanical methods, quantitative structure-property relationship (QSPR) theory, group additivity methods, empirical procedures on the basis of molecular structures, the heat of combustion are suitable methods for predicting the heat of formation of energetic compounds [2,4,5]. Applications of some of these methods in energetic materials have been reviewed elsewhere [2,5]. The condensed phase heats of formation of solid and liquid energetic compounds at 298.15 K can be obtained by combining the gas phase heats of formation with heats of sublimation and vaporization, respectively. Rice et al. [6,7] have used the 6-31G* basis set [8] and the hybrid B3LYP [9,10] density functional for converting quantum mechanical energies of molecules into gas phase heats of formation. They used surface electrostatic potentials of individual molecules for computation of heats of sublimation and vaporization as recommended by Politzer and co-workers [11,12]. Salmon and Dalmazzone [13] developed a suitable group contribution method that can be applied for large classes of CHNO energetic compounds in the solid state (at 298.15 K). Applications of their method have

ABSTRACT

A new reliable simple model is presented for estimating the condensed phase heat of formation of important classes of energetic compounds including polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds. For CHNO energetic compounds, elemental compositions as well as increasing and decreasing energy content parameters are used in the new method. The novel correlation is tested for 192 organic compounds containing complex molecular structures with at least one nitro, nitramine or nitrate energetic functional groups. This work improves the predictive ability of previous empirical correlations for a wide range of energetic compounds. For those energetic compounds where group additivity method can be applied and outputs of quantum mechanical computations were available, it is shown that the root mean square (rms) deviation of the new method is lower.

© 2011 Elsevier B.V. All rights reserved.

some restrictions for complex molecular structures such as the definition of many group additivity values, ring strain corrections and the non-nearest neighbor interactions. For some classes of energetic compounds, several simple correlations between different structural parameters have also been developed [14–18]. As an example, it was found that heats of detonation on the basis of Kamlet's method [19] can also be used for predicting solid phase heats of formation of some explosives in the range $Q_{corr} > 4602$ kJ/g [14], where Q_{corr} is the corrected heats of detonation on the basis of Kamlet's method [19].

It is important to have a reliable simple method for predicting the condensed phase heat of formation of a wide range of organic energetic compounds that contain at least one of the functional groups including $-NO_2$, $-O-NO_2$ or $N-NO_2$. The purpose of this work is to improve predictive ability of previous models [14–18], which have been used for certain classes of energetic compounds. The reliability of the new method will be tested for important classes of energetic compounds including polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds. The estimated results of this method will be compared with the calculated values of group additivity method of Salmon and Dalmazzone [13] as well as outputs of complex quantum mechanical method [6,7].

2. Results and discussion

Since the existence of the variety of different molecular interactions in the condensed phase of energetic compounds, predicting the heat of formation may be difficult. A high density energetic material with a high positive heat of formation may be a good

^{*} Tel.: +98 0312 522 5071; fax: +98 0312 522 5068. *E-mail addresses:* mhkeshavarz@mut.ac.ir, keshavarz7@gmail.com

^{0304-3894/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2011.03.043

M.H. Keshavarz	' Journal (of Hazardous	Materials	190	(2011)) 330–344
----------------	-------------	--------------	-----------	-----	--------	-----------

Table 1

Comparison of the predicted heats of formation (kJ/mol) of the present and Salmon–Dalmazzone (S–D) [13] methods with experimental data for polynitro arene, polynitro heteroarene, acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds that have complex and different molecular structures.

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
1	HO NO ₂ NO ₂ OH	-443.4 [27]	(460.8	17.4	(416.8	(26.6
2		(422.6 [27]	(460.8	38.3	(416.8	(5.8
3		(409.7 [27]	(424.3	14.7	(466.4	56.7
4	$O_2 N \longrightarrow NO_2$ $O_2 N \longrightarrow NO_2$	47.3 [27]	55.7	(8.4	47.8	(0.5
5		(15.1 [27]	6.3	(21.3	(9.5	(5.6
6	O_2N NO_2 H_2N NH_2 NO_2	(97.9 [27]	(73.8	(24.1	(110.3	12.4
7	$O_2 N$ NO_2 $O_2 N$ NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2	296.6 [27]	296.0	0.6	322.6	(26.0
8	0 ₂ N NO ₂ 0 ₂ N NO ₂ NO ₂ NO ₂ NO ₂	94.6 [27]	125.6	(31.1	126.0	(31.4
9	NO ₂ NO ₂ O ₂ N O ₂ N NO ₂	(114.6 [27]	(135.3	20.6	(114.3	(0.3
10		(432.6 [27]	(428.5	(4.1	(455.5	22.9
11		(398.7 [27]	(432.7	34.0	(408.1	9.4
12		(413.8 [27]	(432.7	18.9	(427.9	14.1

Table 1 (Continued)

No	Energetic compound	Experiment	New method	Dev	S–D method	Dev
	NH-	Experiment	new method	bev	5 D method	
13		(45.6 [27]	(60.5	14.9	(22.1	(23.5
14	COOH NO ₂	(427.2 [27]	(432.7	5.5	(427.9	0.7
15	NO ₂ O ₂ N O ₂ N	(298.8 [27]	(273.2	(25.6	(287.2	(11.6
16	O_2N NO_2 H NH_2 NO_2	36.5 [27]	0.8	35.7	15.9	20.6
17		44.6 [27]	28.0	16.6	(84.8	129.4
18	O_2N N NO_2 N_1 NO_2 NO_2 O_2N NO_2	300.0 [27]	330.7	(30.7	297.4	2.6
19	O_2N $NO_2 O_2N$ $N=N$ $NO_2 O_2N$ NO_2	480.3 [27]	478.8	1.6	494.2	(13.9
20	$O_2 N $ NO_2 $O_2 N $ $N $ $+ $ NO_2 O $-$	98.6 [28]	78.8	19.8	(18.5	117.1
21	O_2N N=N N=N NO_2 O_2N N=N O_2N	617.1 [27]	664.7	(47.5	649.9	(32.8
22	$O_2 N$ NO_2 N $O_2 N$ N N N N N N N N N	86.3 [27]	153.3	(67.0	116.6	(30.3
23	$O_2 N$ NO_2 NO_2 $O_2 N$ NO_2 NO_2 NO_2	461.1 [27]	458.4	2.6	315.4	145.7

Table 1 (Continued)

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
24	O_2N NO_2	80.3 [27]	83.6	(3.2	(24.7	105.0
25	$N = N = NO_2$	151.5 [27]	175.6	(24.2	152.5	(1.0
26	$\begin{array}{c} NO_2\\ O_2N\\ O_2N\\ O_2N\\ NO_2\\ NO$	200.0 [27]	186.8	13.2		
27	02N NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2	132.2 [27]	129.8	2.4	125.4	6.8
28	$\begin{array}{c} CH_2ONO_2, \qquad, CH_2ONO_2\\ H_{C}^{}C_{H}^{}\\ CH_2ONO_2^{}C_{C}^{}C_{H}^{}C_{H}_2ONO_2\\ O\end{array}$	(675.8 [28]	(665.2	(10.6	(672.8	(3.0
29	NO ₂ N ₃	308.7 [27]	309.4	(0.7	203.1	105.6
30	C(NO ₂) ₃ CN	174 [27]	135.2	38.8	174.1	(0.1
31	NO ₂	(104 [27]	(88.3	(15.7	(113.8	9.8
32	O ₂ N OH	(370.3 [27]	(363.0	(7.3	(333.6	(36.7
33		(132.8 [27]	(168.5	35.7	(245.3	112.5
34		(386.4 [28]	(418.9	32.5		
35	O ₂ N-CH ₂ CH ₃	(55.3 [27]	(48.1	(7.3	(47.1	(8.2
36	H C C C C H	102.7 [27]	66.9	35.8	115.9	(13.2
37 38 39 40 41	$CH_3CH_2CH(NO_2)_2 \\ O_2NCH_2CH_2NO_2 \\ O_2NCH_2CH_2CH_2NO_2 \\ HOCH_2CH_2CH_2CH_2OH \\ OCH_2C(NO_2)(CH_2OH)CH_2OH \\ HOCH_2C(CH_3)_2NO_2 \\ CH_2O(CH_3)_2NO_2 \\ CH_2O(C$	(163.2 [27] (178.7 [27] (207.1 [27] (742.2 [27] (410.2 [27]	(179.0 (163.9 (210.5 (741.3 (400.4	15.9 (14.8 3.4 (0.9 (9.9	(776.3 (393.9	34.1 (16.3

Table 1 (Continued)

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
42	C(NO ₂) ₃ CH ₂ OH	(261.1 [27]	(246.2	(14.9	(232.9	(28.2
43	$CH_2CH_2C(CH_2OH)_2NO_2$	(601 2 [27]	(617.5	163	(614.9	137
44	$(HOCH_2)_2C(NO_2)(CH_2)$	(570 5 [27]	(570.8	03	(585.1	14.6
45	$C(NO_2)_2 C(HO_2)_2 C(HO_2)_2$	(402.1[27])	(437.4	35.3	(397	(5.1
45	$C(NO_2)_3 CH_2 CH_2 C(-O)OCH_2 C(NO_2)_3$	(496.2.[27]	(437.4	(48.5	(530.3	3/1
40	$C(NO_2)_3 CH_2 CH_2 C(-0) OCH_2 C(NO_2)_3$	(490.2 [27]	(447.7	(40.)	(330.5	(20.1
47	$O_2 N C n_2 C n_2 O n$	(102 5 [27]	(170.0	(45.0	(321.5	(29.1
40		(192.5 [27]	(179.0	(15.4	(200.8	0.1
49	$\sqrt{2}$ NCH ₂ CH ₂ CH ₂ CH ₂ CH ₃	(215.5 [27]	(245.0	29.6		
50	CH ₂ C(NO ₂) ₃	(18.4 [27]	(39.7	21.3	17.1	(35.5
51	O ₂ N	(254.3 [27]	(272.8	18.5		
52	H_3C NO_2 CH_3 O_2N N NO_2	118 0 [27]	85.0	33.0	115.2	2.8
52		100 [27]	05.0	55.0	110.2	2.0
53	0 ₂ N-N_N-NO ₂	(53.1 [27]	(19.9	(33.3	(52.2	(0.9
54	O ₂ N-N	(92.9 [27]	(123.6	30.8	(123.7	30.8
55	CH ₃ CH ₂ N(NO ₂)CH ₂ CH ₃	(105.9 [27]	(124.5	18.6	(109.5	3.6
56	$(CH_2)_2NNO_2$	(71 1 [27]	(31.2	(40.0	(10.2	(60.9
57	CH ₃ N(NO ₂) ₂ O ₂ N	1.7 [27]	19.7	(18.0	((
58	H_3C N_2	10.5 [27]	17.4	(7.0	(55.1	65.6
59	$O_2 N^{\prime N} \sum_{O_2 N}^{\prime N O_2}$	16.2 [27]	59.9	(43.7	25.3	(9.1
60		(192 5 [27]	(245.9	53 5	(258.9	66.4
61	$CH_{2}CH_{2}N(NO_{2})CH_{2}CH_{2}ONO_{2}$	(164.0 [27]	(152.6	(11.4	(220.5	65.1
62		(2574[27]	(132.0	(11.4	(223.1	217
62	$O_2 NOCH_2 CH_2 N(NO_2) CH_2 CH_2 ONO_2$	(257.4 [27]	(212.3	(45.1	(289.1	31./
63 64	$CH_3CH_2CH_2CH_2CH_2N(NO_2)CH_2CH_2ONO$ $CH_3CH_2CH_2N(NO_2)CH_2CH_2ONO_2$ ONO_2	(174.1 [27]	(199.3	85.9 25.2	(229.1	82.0 55.0
65	ONO ₂ CH ₂ ONO ₂	(826.3 [27]	(810.7	(15.7	(840.5	14.2
05			(010.7	(15.7	(040.5	14.2
66		(444.3 [27]	(471.9	27.6	(444.2	(0.1
67	O ₂ NOCH ₂ CH(OH)CH ₂ ONO ₂	(477.0 [27]	(477.2	0.3	(476.6	(0.4
68	HOCH ₂ CH(OH)CH ₂ ONO ₂	(577.0 [27]	(588.0	11.1	(578.0	1.0
69	O2NOCH2CH(ONO2)CH2CH2ONO2	(414.2 [27]	(413.1	(1.2	(405.0	(9.2
70	$O_2 NOCH_2 CH_2 ONO_2$	(232.6 [27]	(260.1	27.5	(254.8	22.2
71	$O_2 NOCH_2 CH(ONO_2) CH_3$	(297.1 [27]	(306.7	9.7	(285.4	(11.7
72	(O2NOCH2)3CCH3	(450.2 [27]	(459.7	9.5	(434.5	(15.7
73	O2NOCH2CH2CH2CH2ONO2	(274.1 [27]	(353.4	79.3	(314.4	40.3
74	$(O_2 \text{NOCH}_2)_3 \text{CCH}_2 \text{CH}_2$	(479.9 [27]	(506.4	26.5	(464.3	(15.6
75	$CH_2 CH(ONO_2)CH_2 CH(ONO_2)CH_2$	(385.8 [27]	(400.1	14.3	(345.8	(40.0
76	$(O_2NOCH_2)_2C(NO_2)CH_2CH_3$ ONO_2	(367.4 [27]	(395.9	28.5	(384.9	17.5
77		(387.9 [27]	(408.1	20.2	(355.1	(32.8
70	-		(22.4.6	2.6		
78 79	$(O_2NOCH_2)_3CCH_2OCH_2C(CH_2ONO_2)_3$	(331.0 [27] (979.5 [27]	(334.b (989.1	3.6 9.6	(975.3	(4.2

candidate of high performance material but its sensitivity can be increased. The heat of formation of an energetic compound is a measure of its energy content that should be considered in designing new energetic compounds. The study of a wide range of different classes of energetic compounds including polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds has shown that a suitable general model can be introduced to predict their condensed phase heat of formation. For certain nitroalkanes, Chen et al. [20] have shown that the elemental composition can be used to correlate the calculated gas phase heat of formation by semi-empirical molecular orbital methods AM1 and PM3 to the condensed phase heat of formation. Furthermore, previous studies [15-18] have confirmed that elemental composition as well as the other structural parameters can influence the predicted values of the condensed phase heat of formation for some classes of energetic compounds. Due to the presence of high intermolecular interactions, the effect of specific polar groups such as -COOH, -OH, >C=O and $-NH_x$ may be important for increasing thermodynamic stability of energetic compounds. The contributions of polar groups in decreasing of energy content of energetic compounds may be additive [17,18]. Meanwhile, it was found that the contributions of -NO₂, -ONO₂ and -NNO2 groups may consider constant and in most cases can have opposite effects. The reported condensed phase heat of 90 of different $C_{a_1}H_{a_2}N_{a_3}O_{a_4}$ compounds were collected and listed in Table 1. The optimized correlation using statistical analyses (multiple regressions [21]) of these compounds give the following equation:

where $\Delta_f H^{\theta}$ is the condensed phase heat of formation; $\Delta_f H^{\theta}_{\rm EC} = 32.33a_1 - 39.49a_2 + 92.41a_3 - 63.85a_4$; $\Delta_f H^{\theta}_{\rm EC}$ is the predicted energy content on the basis of elemental composition; $\Delta_f H^{\theta}_{\rm IEC}$ and $\Delta_f H^{\theta}_{\rm DEC}$ are increasing and decreasing energy content parameters, respectively, which can be specified by the contribution of polar groups and some specific molecular fragments. The coefficients 105.0 and -106.6 in Eq. (1) show the relative contributions of $\Delta_f H^{\theta}_{\rm IEC}$ and $\Delta_f H^{\theta}_{\rm DEC}$ with respect to $\Delta_f H^{\theta}_{\rm EC}$. The values of

 $\Delta_f H_{\rm IEC}^{\theta}$ and $\Delta_f H_{\rm DEC}^{\theta}$ in Eq. (1) are specified in the following situations.

2.1. Prediction of $\Delta_f H_{DEC}^{\theta}$

Some specific polar groups may contribute to $\Delta_f H^{\theta}_{\text{DEC}}$ through increasing thermodynamic stability of desired energetic compounds. Their contributions can be classified as follows:

- (i) *Hydroxyl group* Two different values 1.4 and 1.0 are contributed to $\Delta_f H_{\text{DEC}}^{\theta}$ for energetic compounds containing –OH group in forms Ar–OH and R–OH, respectively. As an example, $\Delta_f H_{\text{DEC}}^{\theta} = 2 \times 1.4 = 2.8$ for 2,4,6-trinitrobenzene-1,3-diol.
- (ii) Amino $(-NH_x)$ groups For the existence of mentioned groups, the value contributed to $\Delta_f H^{\theta}_{DEC}$ is equal to 0.7 (e.g. $\Delta_f H^{\theta}_{DEC} = 3 \times 0.7 = 2.1$ for 2,4,6-trinitrobenzene-1,3,5-triamine). The presence of $-NH_2$, >NH (or $-NH-NH_2$) in energetic compounds not only may increase thermodynamic stability but also can decrease their sensitivities to specific stimuli, e.g. impact [22,23], electric spark [24] and shock [25], with the goal to design and manufacture less sensitive energetic compounds.
- (iii) Acyclic and cyclic ether functional groups The contributions of acyclic and cyclic ether functional groups (except threemembered ring) to $\Delta_f H^{\theta}_{\text{DEC}}$ are 0.5 and 0.9, respectively. As an example, $\Delta_f H^{\theta}_{\text{DEC}} = 1 \times 0.5 = 0.5$ for 2-methoxy-1,3,5trinitrobenzene.
- (iv) The existence of the other specific polar groups For the presence of –COOH (or –ONH₄, –COCO– and –NH–CO–), –N–CO–N–, –COO– (or acyclic –CO–), –CO–H, cyclic –CO– and –NH–NO₂, the contributions of these groups to $\Delta_f H_{\text{DEC}}^{\theta}$ are 2.8, 2.4, 1.4, 1.0, 0.5 and 0.3, respectively. As an example, $\Delta_f H_{\text{DEC}}^{\theta} = 1 \times 2.8 = 2.8$ for 3,5-dinitrobenzoic acid.
- (v) The number of nitrogen heteroatoms in six-member ring For nitroaromatics containing more than one six-member aromatic rings, the contribution of the number of nitrogen heteroatoms in six-membered ring is 0.33. As an example, $\Delta_f H^{\theta}_{\text{DEC}} = 3 \times 0.33 = 0.99$ for 2,4,6-tris(2,4,6-trinitrophenyl)-1,3,5-triazine.

Table 1 (Continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(39.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(14.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.6
86 (386.0 [27]) (434.2) 48.2 87 (O_2NOCH_2)_2C(NO_2)CH_3 (374.0 [27]) (349.2) (24.8) (382.3) 88 $O_2NOCH_2 O_2N$ (287.7 [27]) (322.3) 34.6 (398.3) 89 $H_2N H H H H H H H^2N^{O_2}$ (302.5 [27]) (299.5) (3.0) (313.3)	
87 $(O_2NOCH_2)_2C(NO_2)CH_3$ $(374.0 [27]$ (349.2) (24.8) (382.3) 88 $O_2NOCH_2 O_2N$ $(287.7 [27])$ (322.3) 34.6 (398.3) 89 $H_2N H H H H H H^2N^2$ $(302.5 [27])$ (299.5) (3.0) (313.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.3
89 $H_2 N H H H H H^2 NO_2$ (302.5 [27] (299.5 (3.0 (313.3)) $NO_2 H H H H^2 H^2 NO_2$	110.6
$O > N - CH_3$	10.8
90 0 (305.3 [28] (335.7 30.4 (302.6 NO ₂	(2.7
rms deviation 27.8	44.1

2.2. Prediction of $\Delta_f H_{IEC}^{\theta}$

The presence of some specific molecular fragments and the attachment of nitro and nitrate groups to non-aromatic carbon as well as cyclic and acyclic nitramines contribute to $\Delta_f H_{\text{IEC}}^{\theta}$, which can be described as follows:

- (i) Cyclic and acyclic nitramine functional groups The values of $\Delta_f H_{\rm IEC}^{\theta}$ are 0.5 and 0.8 for the acyclic and cyclic functional groups, respectively. As an example, $\Delta_f H_{\rm IEC}^{\theta} = 0.5$ for 1,3,5-trinitro-1,3,5-triazinane.
- (ii) *R*–*NO*₂ (or *R*–*ONO*₂) and *A*r–*N*₃ For the attachment of –*NO*₂ or –ONO₂ groups to non-aromatic carbon and –*N*₃ group to aromatic ring, the value of $\Delta_f H_{\text{IEC}}^{\theta}$ is 0.3 (e.g. $\Delta_f H_{\text{IEC}}^{\theta} = 0.3$ for 1,1-dinitropropane). There are some exceptions for this case: (a) for the presence –C(NO₂)₃, $\Delta_f H_{\text{IEC}}^{\theta} = 0.8$ (e.g. $\Delta_f H_{\text{DEC}}^{\theta} = 1.0$ and $\Delta_f H_{\text{IEC}}^{\theta} = 0.8$ for 2,2,2-trinitroethanol); (b) for linear mono-nitroalkanes ($a_1 \ge 4$), $\Delta_f H_{\text{IEC}}^{\theta} = 0.6$ (e.g. $\Delta_f H_{\text{IEC}}^{\theta} = 0.6$ for 1-nitrobutane); (c) for hydrogen free nitroalkanes, $\Delta_f H_{\text{DEC}}^{\theta} = 2.2$ (e.g. $\Delta_f H_{\text{IEC}}^{\theta} = 2.2$ for tetranitromethane); (d) for symmetric linear di-nitroalkanes, $\Delta_f H_{\text{IEC}}^{\theta} = 0.0$ (e.g. $\Delta_f H_{\text{DEC}}^{\theta} = 0.0$ for 1,2-dinitroethane).
- (iii) Molecular fragments -N=N- and $\sqrt[]{N-O}_+$ For molecular frag-

ments h^{N-O}_{+} and -N=N-, the contributions to $\Delta_f H^{\theta}_{IEC}$ are 0.7 and 0.8, respectively. As an example, $\Delta_f H^{\theta}_{IEC} = 3 \times 0.7 = 2.1$ for benzenetrifuroxan.

- (iv) The number of carbocyclic aromatic rings (n_{Ar}) For those energetic compounds containing only carbocyclic aromatic rings, the contribution to $\Delta_f H^{\theta}_{\rm IEC}$ is $(n_{\rm Ar} 1) \times 0.3$. The value of $\Delta_f H^{\theta}_{\rm IEC}$ is $(2 1) \times 0.3 = 0.3$ for 2,2',4,4',6,6'-hexanitrobiphenyl as representative example.
- (v) Attachment of alkyl groups to aromatic ring The values of $\Delta_f H_{\rm IEC}^{\theta}$ are 0.2 and 0.8 for the attachment of methyl and higher carbon alkyl groups (or –CH=CH–) to aromatic ring, respectively. As an example, $\Delta_f H_{\rm IEC}^{\theta} = 0.2$ for 1-methyl-2,4-dinitrobenzene. If $n_{\rm Ar}$ > 1, it is not necessary to include previous condition, i.e. (iv).
- (vi) Nitro groups attached to non-aromatic four-membered ring For the attachment of $-NO_2$ groups to non-aromatic fourmembered ring, the contribution to $\Delta_f H^{\theta}_{IEC}$ is 0.45 (e.g. $\Delta_f H^{\theta}_{IEC} = 8 \times 0.45$ for octanitrocubane).

The coefficient of multiple determination (R^2) deviation mainly reflects the goodness of fit of the model, which is 0.983, for Eq. (1) on the basis of data given in Table 1. The values of $\Delta_f H_{\rm IEC}^{\theta}$ and $\Delta_f H_{\rm DEC}^{\theta}$ are equal to zero if the conditions to assign different values are not met.

3. Comparison of the new correlation with outputs of quantum mechanical and group additivity methods

Quantum mechanical computations of Rice et al. [6,7] as well as group contribution procedure of Salmon and Dalmazzone (S–D) [13] are two new and suitable methods, which can be used to compare the reliability of the new correlation. Table 1 shows the comparison between the predicted results of the new correlation and the S–D method. As seen in Table 1, the root mean square (rms) deviations from experiment of the new and the S–D methods are 27.8 and 44.1 kJ/mol, respectively, which confirm the reliability of the present work. A visual comparison of the predicted results of Eq. (1) and the S–D method with the experimental values is shown in Fig. 1. For some energetic compounds, Rice et al. [6,7] have com-

Fig. 1. Calculated condensed phase heats of formation versus experimental data for different 90 energetic compounds given in Table 1. The solid lines represent exact agreement between predictions and experiment. Filled and hollow circles denote the calculated results of the new and the S–D [13] methods, respectively.

puted the condensed phase heat of formation. Table 2 compares the predicted results of the new method with reported outputs of Rice et al. [6,7] as well as group additivity of the S–D method [13]. As indicated in Table 2, the rms deviations from experiment of the new, quantum mechanical and the S–D methods are 18.9, 43.9 and 29.7 kJ/mol, respectively. A visual comparison of the predictions of three mentioned methods with experiment is also given in Fig. 2. As seen in Tables 1 and 2, group additivity of the S–D method [22] has some restrictions and cannot be used in some classes of energetic compounds for the following reasons:

Fig. 2. Calculated condensed phase heats of formation versus experimental data for different 49 energetic compounds given in Table 2. The solid lines represent exact agreement between predictions and experiment. Filled and hollow circles denote calculated results of the new and the S–D [13] methods. Filled triangles denote the calculated quantum mechanical outputs by Rice et al. [6,7].

Table 2

Comparison of the predicted condensed heats of formation (kJ/mol) from the new, quantum mechanical (QM) [6,7] and Salmon–Dalmazzone (S–D) [13] methods with experimental data.

No.	Name	Experiment	New method	Dev	QM	Dev	S–D method	Dev
1	$O_2N - \bigvee_{NO_2 O_2N} NO_2 O_2N - NO_2$	68.2 [27]	49.7	18.5	(67.8	136.0	27.3	40.9
2	N-0 + N-0 + N-0 N-0 N-0 +N-0 - 0	606.3 [27]	585.8	20.4	602.1	4.2	627.6	(21.3
3		(187.2 [27]	(194.2	7.0	(184.1	(3.1	(174.2	(13.0
4	$O_2N \rightarrow \bigcirc O_2N \rightarrow \bigcirc O_2N \rightarrow O_2$	67.8 [27]	87.9	(20.1	(39.7	107.5	78.2	(10.4
5	OH NO2 NO2 OH NO2	(467.5 [27]	(456.6	(10.9	(395.0	(72.6	(427.9	(39.6
6	$\begin{array}{c} NH_2\\ NO_2N \\ H_2N \\ NO_2 \end{array} \\ NH_2\\ NH_2 \end{array}$	(74.7 [27]	(95.6	20.9	(87.0	12.3	(128.8	54.1
7	NO ₂ NO ₂	(1.7 [27]	(34.6	32.9	(12.6	10.9	(10.0	8.3
8		(27.2 [27]	(34.6	7.4	(50.2	23.0	(42.8	15.6
9	NO ₂ NO ₂	(38.5 [27]	(34.6	(3.9	(38.5	0.0	(36.8	(1.7
10	OH NO ₂ NO ₂	(235.5 [27]	(247.7	12.2	(228.9	(6.7	(219.9	(15.6
11	O ₂ N, NO ₂	(209.6 [27]	(247.7	38.1	(200.0	(9.6	(219.9	10.3
12	NO ₂ NO ₂	(66.4 [27]	(60.2	(6.2	(84.9	18.5	(69.6	3.2

Table 2 (Continued)

No.	Name	Experiment	New method	Dev	QM	Dev	S–D method	Dev
	NO ₂	F						
13	CH ₃ NO ₂	(55.2 [27]	(60.2	5.0	(64.0	8.8	(61.9	6.7
14	O_2N NO_2	(124.5 [27]	(149.3	24.9	(135.6	11.1	(130.8	6.3
15	NO ₂ O ₂ N NO ₂	(37.2 [27]	(30.4	(6.9	(68.6	31.4	(73.5	36.3
16	OH O ₂ N NO ₂	(217.9 [27]	(243.5	25.6	(226.8	8.9	(250.7	32.8
17	O ₂ N NH ₂ NO ₂	(72.8 [27]	(52.1	(20.7	(89.1	16.3	(92.0	19.2
18	O ₂ N, NO ₂ NO ₂	(63.2 [27]	(56.0	(7.1	(87.4	24.3	(92.6	29.4
19	CH ₃ NO ₂	(48.2 [27]	(64.4	16.2	(66.5	18.3	(46.5	(1.7
20	OH NO2	(204.6 [27]	(188.0	(16.6	(190.0	(14.6	(189.2	(15.4
21	OH NO ₂	(205.7 [27]	(188.0	(17.6	(193.3	(12.4	(209.0	3.3
22	NO ₂	(207.1 [27]	(188.0	(19.1	(208.4	1.3	(209.0	1.9
23	NH ₂ NO ₂	(36.4 [27]	(60.5	24.1	(26.4	(10.0	(22.1	(14.3
24	NH ₂ NO ₂	(26.4 [27]	(60.5	34.1	(32.2	5.9	(26.2	(0.2
25	OH O ₂ N H CH ₃ CH ₃	(279.1 [27]	(273.4	(5.7	(270.3	(8.8	(254.4	(24.7

Table 2 (Continued)

	ntinucu)							
No.	Name	Experiment	New method	Dev	QM	Dev	S-D method	Dev
	NO ₂							
26		45.7 [27]	43.1	2.7	34.3	11.4	43.0	2.7
27	CH ₃ NO ₂	(112.5 [27]	(89.9	(22.6	(114.6	2.1		
28	$CH_2(NO_2)_2$	(104.9 [27]	(85.7	(19.2	(96.2	(8.7		
29	CH(NO ₂) ₃	(68.0 [27]	(81.5	13.6	(45.2	(22.8		
30 31	$C(NO_2)_4$	38.5 [27]	58.3	(19.8	38.1	0.4		
32	$C(NO_2)_2C(NO_2)_2$	108.4 [27]	83.9	24.5	101.7	6.7	(4.1	112.5
33	$CH_3CH_2CH_2NO_2$	(167.4 [27]	(183.2	15.9	(180.3	13.0	(
34	CH ₃ CH(NO ₂)CH ₃	(180.3 [27]	(183.2	2.9	(189.1	8.8		
35	CH ₃ CH ₂ CH ₂ CH ₂ NO ₂	(192.6 [27]	(198.4	5.8	(202.9	10.3		
36	$CH_3CH(NO_2)CH_2CH_3$	(207.6 [27]	(198.4	(9.2	(210.9	3.3	(202.0	(0.5.4
37	$(CH_3)_3C(NO_2)$	(229.7 [27]	(229.9	0.2	(225.1	(4.6	(202.6	(27.1
30 39	$CH_{3}CH_{2}ONO_{2}$ $CH_{3}ONO_{3}CH(ONO_{3})CH_{3}ONO_{3}$	(369 9 [27]	(366.4	(3.5	(203.5	0.8		
40	CH ₃ CH ₂ CH ₂ ONO ₂	(214.6 [27]	(247.1	32.5	(227.2	12.6		
41	$C(CH_2ONO_2)_4$	(538.5 [27]	(519.4	(19.1	(566.1	27.6	(521.7	(16.8
	NH ₂							
42		(86.6 [27]	(65.0	(21.6	(31.0	(55.6	(114.2	27.6
	0 ₂ N, NO ₂							
43	NO ₀	75.3 [27]	94.3	(19.0	87.0	(11.7	69.4	5.9
44		79.1 [27]	83.9	(4.8	107.1	(28.0	69.5	9.6
45	$O_2 N$ NO_2 NO_2	41.0 [27]	64.1	(23.1	(7.1	48.1	(5.5	46.5
46	$\xrightarrow{H_2N}_{H_2N} \xrightarrow{NO_2}_{NO_2}$	(133.9 [29]	(128.4	(5.5	(82.0	(51.9		
47	O_2N NO_2 O_2N NO_2 O_2N O_2N NO_2	381.2 [30]	354.3	26.8	575.7	(194.6		
48	O ₂ N N NO ₂ O ₂ N N NO ₂ N NO ₂ N NO ₂	377.4 [31]	352.2	25.2	415.1	(37.7		
49		(129.4 [32]	(92.2	(37.3	(66.5	(62.9		
	- rms deviation			18.9		43.9		29.7

(i) The S–D method can be used to estimate only the solid state heat of formation of $C_{a_1}H_{a_2}N_{a_3}O_{a_4}$ energetic compounds. However, the S–D method cannot be applied for those energetic compounds that have liquid state at 298.15 K. method. Thus, this method cannot be used to calculate the solid phase heat of formation of some new energetic compounds such as 2,2-dinitroethene-1,1-diamine (FOX-7).

- (ii) Group contributions of a number of some functional groups for energetic compounds have not been defined in the S–D
- (iii) Cage energetic compounds are important new energetic compounds because they have not only high energy content but also provide high density, which give high energy density com-

Table 3

Comparison of theoretically predicted heats of formation (kJ/mol) of the present and Salmon–Dalmazzone (S–D) [13] methods with experimental data for some further energetic compounds including well-known explosives.

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
1		78.8 [28]	69.2	9.6	(13	91.8
2	$O_2 N$ N_2^+ N_2^+	194.0 [28]	165.4	28.6		
3	O ₂ N H NO ₂	22.9 [28]	11.2	11.6	38.0	(15.1
4	NO ₂ NO ₂	30.6 [28]	47.3	(16.7	12.2	18.4
5	NO ₂ NO ₂	37.6 [28]	47.3	(9.6	60.8	(23.2
6	NHNH ₂ NO ₂ NO ₂	50.0 [28]	7.3	42.7	46.7	3.3
7	O_2N NO_2 NO_2	(200.8 [28]	(240.8	40.1	(196.7	(4.1
8		(248.1 [28]	(269.4	21.3	(229.9	(18.2
9		(48.9 [28]	(47.9	(1.0	(63.9	15.0
10	O ₂ N NO ₂ NO ₂ NO ₂ NO ₂	18.9 [28]	67.1	(48.2	3.2	15.7
11	NO ₂ NO ₂ O ₂ N NO ₂	10.8 [28]	55.7	(44.8	(49.2	60.0
12		(252.1 [28]	(269.2	17.0	(269.8	17.7

Table 3 (Continued)

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
13		(277.3 [28]	(269.0	(8.3	(286.6	9.3
14	NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2 O_2N NO_2	791.6 [27]	747.6	44.0	759.3	32.3
15	O_2N H_3 NO_2 CH_3 NO_2 CH_3 NO_2	(102.5 [28]	(102.7	0.1	(111.7	9.2
16	O_2N H_3C C H_2	(48.7 [27]	(48.1	(0.6	(39.4	(9.3
17		22.5 [27]	11.2	11.3	38.0	(15.5
18		(427.9 [27]	(426.4	(1.5	(411.3	(16.6
19	O_2N NO_2 NO_2 O_2N NO_2 NO_2 O_2N NO_2 NO_2 O_2N NO_2 NO_2 NO_2 O_2N NO_2 NO_2	213.0 [27]	209.9	3.0	209.8	3.2
20	H ₃ C ^O NO ₂ NH ₂	(232.0 [27]	(224.3	(7.7	(185.5	(46.5
21	O ₂ N H C C H NO ₂	74.1 [27]	71.1	3.0	85.1	(11.0
22	$C(NO_2)_3CH_2CH_2CN$	3.4 [27]	41.9	(38.5	52.8	(49.4
23		22.9 [28]	11.2	11.7	38	(15.1
24	O_2N	22.9 [28]	11.2	11.7	38	(15.1
25	$O_2N - N - NO_2$	22.9 [28]	11.2	11.7	18.2	4.7
26	H ₃ C N-NO ₂	(38.5 [27]	(79.2	40.7	0.1	(38.6

Table 3 (Continued)

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
27		(227.0 [27]	(226.4	(0.6	(227.3	0.3
28	NO ₂ O OH	(379.9 [27]	(363.0	(16.9	(333.6	(46.3
29		(213.0 [27]	(236.8	23.8	(215.8	2.8
30	OH NO ₂	(172.0 [27]	(165.9	(6.1	(164.9	(7.1
31	O ₂ N, O, NH ₂ O	(323.0 [27]	(365.5	42.5	(237.8	(85.2
32		(517.1 [27]	(546.9	29.8	(515.3	(1.8
33 34	$C(NO_2)_3CH_3$ $CH_3N(NO_2)CH_2N(NO_2)CH_3$ $H_2 NO_2$	(113.0 [27] (29.8 [27]	(75.7 (20.7	(37.3 (9.1	(41.6 19.7	(71.4 (49.5
35	$O = \begin{pmatrix} NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \end{pmatrix}$	(321.7 [28]	(338.0	16.3	(270.9	(50.8
36	CH ₂ ONO ₂ CH ₂ CHONO ₂ CHONO ₂ CH ₂ ONO ₂	(405.9 [28]	(413.1	7.2	(405	(0.9
37	O ₂ N-N CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	(192.3 [28]	(245.9	53.6	(258.9	66.6
38	$0 + N-CH_2CH_2ONO_2$ $0 + N-CH_2CH_2ONO_2$ $N-CH_2CH_2ONO_2$ NO_2	(561.7 [28]	(548.3	(13.4	(581.6	19.9
39	$\begin{array}{c} CH_2ONO_2\\ CH_3CH_2C-CH_2ONO_2\\ CH_2ONO_2\end{array}$	(479.5 [28]	(506.4	26.9	(463.3	(16.2
40	$\begin{array}{c} H_{2C} \xrightarrow{H} NO_{2} \\ H_{2}C \xrightarrow{N-NO_{2}} \\ H_{2}C \xrightarrow{N-NO_{2}} \end{array}$	(103.7 [28]	(122.0	18.3	(103.8	0.1
41	CH ₂ ONO ₂ CHONO ₂ CHONO ₂ CHONO ₂ CHONO ₂ CHONO ₂ CH ₂ ONO ₂	(675.5 [28]	(685.3	9.8	(736.4	60.9
42		22.1 [28]	(12.1	34.1	4.1	18.0
43	CH ₂ ONO ₂ I CH ₂ ONO ₂	(242.7 [28]	(260.1	17.4	(254.8	12.1
44		(282.3 [28]	(288.4	6.1	(226.6	(55.7

Table 3 (Continued)

No.	Energetic compound	Experiment	New method	Dev	S–D method	Dev
45	$\begin{array}{c} CH_2ONO_2\\ HOCH_2C-CH_2ONO_2\\ CH_2ONO_2\end{array}$	(560.4 [28]	(630.2	69.8	(625.7	65.3
46	$\left[-CH_2CH(ONO_2) - \right]_n$	(102.6 [28]	(121.5	18.9		
47	$H_{3}C_{1}$ $H_{3}C^{-}H^{-ONO_{2}}$	(229.3 [28]	(247.1	17.8		
48	$\begin{array}{c} O_2N \bigvee \begin{matrix} H_2 \\ N - C \\ C \end{matrix} \\ H_2 \end{matrix} \\ NO_2 \\ NO_2 \end{array}$	36.4 [28]	72.6	(36.2	(97.0	133.4
49	$O_2 N_N NO_2$	(41.8 [27]	(77.9	36.1	(57.9	16.1
50	$O_2 N \xrightarrow{NO_2} O_2 N \xrightarrow{NO_2} O_2 N \xrightarrow{NO_2} O_2 N \xrightarrow{NO_2} O_2 O O_$	(98.3 [27]	(87.5	(10.8	(165.8	67.5
51	NO₂ O₂NOCH₂CH₂−N_CH₃	(149.8 [27]	(106.0	(43.8	(143.3	(6.5
52	$O_2 NOCH_2$ ONO_2	(1364.0 [27]	(1363.4	(0.6	(1364.0	0.0
53	$\begin{array}{c} NO_2 \\ O_2N \xrightarrow{NO_2} \\ NO_2 \end{array} \begin{array}{c} NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \end{array}$	(28.0 [27]	(15.3	(12.7	(42.5	14.5
54	$\begin{array}{c} CH_3\\O_2NOCH_2 & \longrightarrow\\ CH_2\\ONO_2 \end{array}$	(374.0 [27]	(349.2	(24.8	(379.6	5.6
	rms deviation			26.4		40.1

pounds. Salmon and Dalmazzone [13] have not determined ring–strain corrections for ε -hexanitrohexaisowurtzitane and β -hexanitrohexaisowurtzitane. However, application of the S–D method without ring–strain corrections gives large deviation with respect to experimental data. For example, the predicted solid heat of formation of octanitrocubane by the S–D method is –539.4 kJ/mol with large deviation 920.6 kJ/mol.

Quantum mechanical method of Rice et al. [6,7] requires high speed computer and complex Gaussian suite of quantum chemistry codes [26]. Furthermore, it takes high computer times for large energetic molecules and, as seen in Table 2, its rms deviation is higher than both the new and the S–D methods.

To examine the application of the present method for some further energetic compound with complex molecular structures and different molecular fragments, the calculated values for 54 energetic compounds are also given in Table 3. A comparison of new model with the S–D method for some energetic compounds in the solid phase is also given in Table 3. As shown in Table 3, the rms deviation of this new method is lower than that of the S–D method. Fig. 3 provides a visual comparison between experiment and the predictions of present work and the S–D method. As indicated in Tables 1–3, the present work provides much better results than Rice et al. computations [6,7] and the S–D method [13].

Since there are different values for the condensed phase heats of formation reported from different sources in Tables 1–3, the latest reported values of the NIST Chemistry Web Book [27] were taken to compare the above mentioned method with the experimental data. For example, -32.1, -68.8 and -77.95 kJ/mol are three reported values for trinitromethane or 44.56 and 76.27 kJ/mol are two different reported experimental data for bis(2,4,6-trinitrophenyl)amine [23]. However, due to large experimental errors in determination of the condensed phase heat of formation of energetic compounds, the predictive results of present model may be useful with respect to two of the best available methods, i.e. quantum mechanical based method and group additivity procedure.

Fig. 3. Calculated condensed phase heats of formation versus experimental data for different 54 energetic compounds given in Table 3. The solid lines represent exact agreement between predictions and experiment. Filled and hollow circles denote the calculated results of the new and the S–D [13] methods, respectively.

4. Conclusions

A novel reliable simple correlation has been introduced to predict the condensed phase heats of formation in polynitro arene, polynitro heteroarene, acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds. Elemental composition and two increasing and decreasing energy content parameters are important factors in the new model, which uses the contribution of polar groups and some specific molecular fragments. As shown in Tables 1–3, the predictions for 192 molecules containing energetic bonds –NO₂, –ONO₂, –NNO₂ with this new method provides reliable results with respect to both quantum mechanical [7,8] and the S–D [9] methods.

Acknowledgements

I would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

References

- J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
- [2] A.K. Sikder, G. Maddala, J.P. Agrawal, H. Singh, Important aspects of behaviour of organic energetic compounds: a review, J. Hazard. Mater. A 84 (2001) 1–26.
- [3] M.H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, H.R. Nazari, J. Azarniamehraban, A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I, J. Hazard. Mater. 172 (2009) 1218–1228.
- [4] B.M. Rice, E.F.C. Byrd, W.D. Mattson, Computational aspects of nitrogen-rich HEDMs, Struct. Bond. 125 (2007) 153-194.
- [5] M.H. Keshavarz, B. Ebrahimi Saatluo, A. Hassanzadeh, A new method for predicting the heats of combustion of polynitro arene; polynitro heteroarene; acyclic and cyclic nitramine; nitrate ester and nitroaliphatic compounds, J. Hazard. Mater. 185 (2011) 1086–1106.

- [6] B.M. Rice, S.V. Pai, J. Hare, Predicting heats of formation of energetic materials using quantum mechanical calculations, Combust. Flame 118 (1999) 445–458.
- [7] B.M. Rice, J. Hare, Predicting heats of detonation using quantum mechanical calculations, Thermochim. Acta 384 (2002) 377–391.
- [8] W.J. Hehre, L. Rdom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, pp. 271, 298.
- [9] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652.
- [10] C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlationenergy formula into a functional of the electron density, Phys. Rev. B 37 (1998) 785–789.
- [11] P. Politzer, J.S. Murray, T. Brinck, P. Lane, in: J.O. Nelson, A.E. Karu, R.B. Wong (Eds.), Immunoanalysis of Agrochemicals, ACS Sym. Ser. 586, American Chemical Society, Washington, DC, 1994 (Chapter 8).
- [12] J.S. Murray, P. Politzer, in: P. Politzer, J.S. Murray (Eds.), Quantitative Treatment of Solute/Solvent Interactions, Theoretical and Computational Chemistry, vol. 1, Elsevier, Amsterdam, 1994, pp. 243–289.
- [13] A. Salmon, D. Dalmazzone, Prediction enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions-part 2: carbon-hydrogen, carbon-hydrogen-oxygen, and carbon-hydrogen-nitrogen-oxygen compounds, J. Phys. Chem. Ref. Data 36 (2007) 19–57.
- [14] M.H. Keshavarz, M. Oftadeh, New estimated method for heat of formation of CHNO explosives in solid state, High Temp. High Press. 35–36 (2003/2006) 499–504.
- [15] M.H. Keshavarz, Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds, J. Hazard. Mater. A 136 (2006) 145–150.
- [16] M.H. Keshavarz, A simple procedure for calculating condensed phase heat of formation of nitroaromatic energetic materials, J. Hazard. Mater. A 136 (2006) 425–431.
- [17] M.H. Keshavarz, Predicting condensed phase heat of formation of nitroaromatic compounds, J. Hazard. Mater. 169 (2009) 890–900.
- [18] M.H. Keshavarz, H. Sadeghi, A new approach to predict the condensed phase heat of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds, J. Hazard. Mater. 171 (2009) 140–146.
- [19] M.J. Kamlet, S.J. Jacobs, Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives, J. Chem. Phys. 48 (1968) 23–35.
- [20] P.C. Chen, J.C. Wu, S.C. Chen, Correlations between theoretical and experimental determination of heat of formation of certain aliphatic nitro compounds, Comput. Chem. 25 (2001) 439–445.
- [21] W.J. Palm III, Introduction to Matlab for Engineers, McGraw-Hill, 2005, pp. 328, 394.
- [22] M.H. Keshavarz, A. Zali, A. Shokrolahi, A simple approach for predicting impact sensitivity of polynitroheteroarenes, J. Hazard. Mater. 166 (2009) 1115–1119.
- [23] M.H. Keshavarz, Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines and nitroaliphatics, Propell. Explos. Prot. 35 (2010) 175–181.
- [24] M.H. Keshavarz, Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure, J. Hazard. Mater. 153 (2008) 201–206.
- [25] M.H. Keshavarz, H. Motamedoshariati, H.R. Pouretedal, M. Kavosh Tehrani, A. Semnani, Prediction of shock sensitivity of explosives based on small scale gap test, J. Hazard. Mater. A 145 (2007) 109–112.
- [26] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Statmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Oritz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andrs, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Gaussian Inc., Pittsburgh PA, 1998.
- [27] NIST Standard Reference Data Base Number 69, which can be accessed electronically through the NIST Chemistry Web Book (http://webbook. nist.gov/chemistry/), references for individual molecules are given therein.
- [28] R. Meyer, J. Köhler, A. Homburg, Explosives, sixth edition, Wiley-VCH, 2007.
- [29] H. Ostmark, A. Langlet, H. Bergman, N. Wingborg, U. Wellmar, U. Beem, Fox-7: A New Explosive with Low Sensitivity and High Performance FOA, Defence Research Establishment, SE-172 90, Stockholm, Sweden, 1998.
- [30] L.E. Fried, W.M. Howard, P. Clark Soures, Cheetah 2.0, User's Manual, UCRL-MA-117541 Re 5, All values taken from reactant library, 1998.
- [31] R.L. Simpson, P.A. Urtiew, D.L. Ornellas, G.L. Moody, K.J. Scribner, D.M. Hoffman, CL-20 performance exceeds that of HMX and its sensitivity is moderate, Propell. Explos. Pyrot. 22 (1997) 249–255.
- [32] T.N. Hall, J.R. Holden, NSWC MP-88-116 (1988).